Chapter 18

A Nonlinear Aeroelastic Model for the Study
of Flapping Wing Flight

Rambod F. Larijani* and James D. DeLaurier!
University of Toronto, Downsview, Ontario, Canada

Nomenclature
A = element cross-sectional area
AR = aspect ratio
a = mass-proportional damping constant
b = stiffness-proportional damping constant
Cyq = drag coefficient
Cyr = skin-friction drag coefficient
Cmac = airfoil moment coefficient about its acrodynamic center
C, = normal force coefficient
c = wing segment chord length
D, = drag due to camber

Dy = friction drag

E = medulus of elasticity

F, = total chordwise force

F'(k), G'(k) = terms for modified Theodorsen function

G = shear modulus of elasticity

g,A = acceleration due to gravity

h = total plunging displacement

h = elastic component of plunging displacement
hg = 1mposed displacement

I = moment of inertia

J = polar moment of inertia

k = reduced frequency based on l¢

L = total lift -

M = total twisting moment acting on a wing segment
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= distributed moment per unit length,

mass per unit length

total normal force acting on a wing segment
distributed normal force per unit length
clement boundary conditions for torsion
contact pressure

element boundary conditions for bending
total thrust

leading edge suction force

freestream velocity

relative velocity at %—chord location

relative velocity tangential to a wing segment
relative velocity of upper vs lower surface of the wing

= distance from flapping axis to middle of segment
= distance from the leading edge

relative angle of attack at %-chord point due to wing segment
motion

the flow’s relative angle of attack at %—chord point

wing segment’s angle of zero-lift line

= segment stall angle

magnitude of flapping dihedral angle
length of an element

nonflapping plunging displacement
nonflapping elastic twist

leading-edge suction efficiency

total segment twist angle with respect to U
elastic twist angle

angle of flapping axis with respect to U
built-in pretwist

atmospheric density

= decay constant

transverse twist angle (along local y axis)

= flapping frequency

= apparent mass

T T T

acrodynamic center
aerodynamic

average

circulatory

crosstlow

center section

contact

damping

shear rate dependent damping
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A

ea = elastic axis
ef = effective

F = friction

s = fabric and rib
inertia = inertial

rs = rigid section
% = spar

sep = separated flow
st = super rib

st = stafic

te = trailing edge
Superscripts

- = mean value
n,n+1 = time level

time derivative

I. Introduction

I N SEPTEMBER 1991 an engine-powered remotely piloted ornithopter flew
successfully for 2 min 46 s. This quarter-scale proof-of-concept model (Fig. 1)
is described in Ref. 1. A second ornithopter model was built for the Canada Pavilion
at Expo 1992 in Seville, Spain. This aircraft, appropriately named “Expothopter,”
was similar to the quarter-scale model in that it was completely flightworthy, but
owing to the success of the quarter-scale model it was not necessary to fly the
Expothopter.

Using the knowledge gained during the construction and testing of the quarter-
scale model and Expothopter, a full-scale engine-powered human-carrying
ornithopter (Fig. 2} was designed and built at the University of Toronto’s Institute
for Acrospace Studies. Details of the design, construction, and initial testing are
described in Ref. 2. Results from the initial static-flapping (no forward speed) tests
as well as some of the low-speed taxi tests are presented by Mehler.® The 1997
and 1998 taxi tests and the main bulk of the experimental data are discussed in
detail by Fenton.*

An S1020 airfoil used in the quarter-scale model’s wing was designed by Profes-
sor Michael Selig of the University of Illinois. This thick airfoil provides very high
leading-edge suction efficiency as well as considerable structural depth. The full-
scale ornithopter’s wing also incorporates the S1020 airfoil. The inner portion of
the wing uses this airfoil up to the “knuckle” (Fig. 4), and the outer tapered portion
linearly transforms the S1020 to a Selig and Donovan SD8020 symmetrical airfoil
at the tip. Figure 3 shows the airfoil shapes along the span of the full-scale or-
nithopter’s wing. A rigid section, which is also known as the “SuperBox” (Fig. 4),
i3 a closed structure made up of thin composite panels, internal ribs, a D-nose spar,
and a rear shear web. Its function is to support the wing and transfer the loads to the
outrigger struts. The outer rib of the SuperBox is referred to as the “SuperRib.” The
rest of the wing consists of 20 full-length ribs, made with a foam core and capped
with basswood strips. The wing is covered with lightweight polyester fabric.
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Fig. 1 Drawing of quarter-scale model ornithopter.

The center section is made up of composite panels, fore and aft shear webs,
and nine internal ribs. The aerodynamic shape is created with a hollow blue-foam
D-nose and nine half-length ribs. The cross section of the full-scale ornithopter
wing spar (Fig. 5) is similar to that for the quarter-scale model. It is comprised
of a carbon-fiber reinforced shear web for bending stiffness and strength, and
a Kevlar® D-nose shell over a foam core for a structure of specified torsional
compliance.’

A special feature of this wing’s structure is that it is able to provide the required
torsional compliance while at the same time incorporating the efficient and thick
$1020 airfoil. Figure 6 shows how this is accomplished, where the closed torsion
box normally formed by the thick airfoil is opened by splitting the trailing edge.
This feature, patented as the “Shearflex Principle,” allows a double-surface wing
to have the high torsional compliance of two single-surface wings joined at the
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Fig.2 Drawing of full-scale ornithopter.

leading edge. Therefore the ornithopter wing is able to twist freely even though its
lightweight covering does not stretch. In fact, shearflexing would work well even
if the skin were thick and relatively inflexible.

Analytical work done for the initial stages of the ornithopter project was based
on a program called “Fullwing,” which was developed to predict the performance
of a flapping wing in steady flight.® Fullwing has gone through several revisions
and 1t was most recently modified by the first author to improve its accuracy.
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Fig. 3 Airfoils along the span.
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Fig. 4 'Top view of ornithopter wing.
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Fig. 5 Wing spar cross section.
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Fig. 6 Shearflexing principle.
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The most significant assumption made in Fullwing is that of fully attached
flow to linearize the equations. This gives inaccurate results as stalling domi-
nates in the low forward-speed, high flapping-frequency regime, which became
apparent during the static tests in 1996. It was noted that the phase angle be-
tween pitching and plunging was nowhere near the design value of approximately
—90 deg. A “full-stall” formulation should give a more accurate representation
of the problem. A second assumption is that the response has a simple harmonic
motion. Although this is a reasonable description of the actual response, the pres-
ence of nonharmonic motion cannot be predicted. Also, its use of structural in-
fluence coefficients instead of a stiffness formulation has the disadvantage that
for every new geometry the coefficients have to be rederived. An algorithm that
uses transformation matrices can handle various geometric configurations more
easily.

II. Structural Analysis

This section presents the linear ordinary differential equations governing the
flapping motion of a wing and describes the matrices and vectors associated with
them. The two principal modes of motion for a flapping wing are bending and
torsion. A finite element discretization breaks the wing into spar elements with
bending and torsional degrees of freedom and fabric and rib elements that have
torsional degrees of freedom only (Fig. 7). For bending, the computational do-
main is divided into a set of clements, with each having two nodes (Fig. 8). A
single element is then isolated and the Galerkin method” is applied, using a set of
Hermite cubic interpolation functions, to derive the finite element formulation of
the problem.

For torsion, the domain is also divided into a set of elements, with each element
having two nodes as shown in Fig. 9. The Galerkin method is applied using a set
of linear interpolation functions.
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Fig. 7 Finite element discretization of ornithopter wing.
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Fig. 8 Bending element.

The system dynamic equilibrium equations, including damping and neglecting
external reactions, which are accounted for by boundary conditions, are

[K]{y} + [DI{¥} + [M}{y} = {F} (1

The stiffness matrix for an element having both bending and torsional degrees
of freedom is given by

12E1 0 —6ET —12E] 0 —6FE]
Ax3 Ax? Ax? Ax?
GJ ~GJ
0 - 0 0 e 0
—6E[ 0 4E [ 6E[! 0 2ET
Ax? Ax Ax? Ax
[K] = 12E1 6ET 12E (2)
— 0 I 0 6F{
Ax? Ax? Ax? Ax?
—-GJ GJ
0 . 0 0 T 0
—6ET 0 2ET 6Ff 0 4EF
Ax? Ax Ax? Ax

where EI is the bending stiffness parameter, GJ is the corresponding torsional
stiffness parameter for an element, and Ax is the length of a particular element. The
overall consistent mass matrix for an element with total mass per unit length 7 is

m(x t)

ff” N
x\ g

AX

Z +

Fig. 9 Torsional element,
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given by
[ 156 0 —2& 54 0 13Av ]
420 420 420 420
S S
0 3A 0 0 6A 0
—22Ax 0 4Ax° —13Ax 0 —3Ax7
== 420 420 420 420
[M] = mAx 54 0 =13ax 156 0 24x (3)
20 420 120 420
L I
0 £ 0 0 o 0
13Ax 0 —3Ax’ 22Ax 0 NS
420 420 470 420

Assuming that the normal force and moment are constant over an element [i.e.,
n(x, t) = n(r) and m(x, 1) = m(t)] the force vector and the vector of independent
variables are given by

_ N [+
2 hy
M ~
5 01
N()Ax w
1
Fr={ 5o (- =11 4)
—73 2
M) ]
2 )
N(OHAX
o | WzJ

where N(t) = n(t) x Ax and M(r) = m(t) x Ax. The aerodynamic forces and
moments associated with a flapping wing in steady flight are nonlinear functions
of the twisting and plunging deflections of the wing and their first and second
derivatives. Equation (1) is a second-order nonlinear equation that is solved by
using a Taylor series expansion to approximate the nonlinear components of the
force vector. Several time-marching methods were considered and the nonlinear
Newmark method was chosen because of its stability and ease of use. The nonlinear
Newmark method is described in detail in Ref. 8. In the present study, since
a temporal approximation has been used to obtain a set of linear second-order
equations, an iteration must be performed at each time step to ensure that the
equilibrium equations are satisfied. This iteration procedure is outlined by Owen.”
The performance of the Newmark algorithm has been studied extensively and it is
known to be unconditionally stable.!”

III. Aerodynamic and Inertial Forces and Moments

The unsteady aerodynamic model for the study of a flapping wing is based
on a modified strip theory approach. Vortex wake effects are accounted for as
well as partial leading-edge suction and poststall behavior along with sectional
mean angle of attack, camber, and friction drag. This model is then used for the
calculation of average lift and thrust, power required, and propulsive efficiency
of a flapping wing in equilibrium flight. A detailed treatment of this is given in
Refs. 11 and 12.
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Fig. 10 Wing section aerodynamic forces and motion variables.

The starting point for the aerodynamic analysis is to determine the normal force
N and moment M in Eq. (4) acting on a wing segment. For any element, M and
N consist of aerodynamic and inertial terms:

N = Naero + Ninertia (5)
M = Maero + Minertia + Mdarnp (6)

A. Aerodynamic Forces and Moments

The aerodynamic forces and moments are introduced in this section and the
damping moment is treated separately in the next section along with the spar’s
structural damping. Figure 10 shows the aerodynamic forces on a representative
segment (clement) of the wing. Aerodynamic loads depend on whether the flow
over a segment is attached or stalled.

1. Anached Flow
In the attached-flow regime the aerodynamic normal force is given by
Naero = Nc+Na (7)

where N, is the circulatory normal force and N, is the apparent-mass normal force.
The circulatory normal force on the wing segment is given by

N, = 3pUV CpcAx (8)

where U is freestream air speed, ¢ is the chord length of a Iparticular segment, and
Ax is the segment’s length. V is the flow velocity at the 1-chord location. Using
small-angle assumptions, the normal force coefficient is shown to be!!

Cp = 2rt{a’ + ag + 0, + Byasn) &)

where ay is the zero-lift angle, 8, is the flapping axis angle of attack, and fy.sh
1s the built-in pretwist of the wmg ¢’ is the flow’s relative angle of attack at the
——chord point and is given by!!

AR - Gk 2 Q_a Q_Was
2+ AR 2U  k 2+ AR

(10)
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Equation (10) 1s predicated on simple harmonic motion for «. In this case the
motion can be periodic but not necessarily simple harmonic. Therefore, the use
of this equation is considered to be an approximation to the unsteady shed wake
effects. Each chordwise strip on the wing i1s assumed to act as if it were part of an
elliptical planform wing executing simple harmonic whole-wing motion identical
to that of the strip’s. AR is the wing’s aspect ratio and & is the reduced frequency,
which 1s given by

_Ca)
22U

Using a simplified formulation of the modified Theodorsen function, which was
originally presented by Jones,'* F'(k) and G'(k) are given by'!

k (1)

Cik? C,Cak
Fly=1- s, GU)=-—2
k? + C k? 4+ C; (12)
0.5AR 0.772
e Co = 0181 + ——=
L= 2321 AR 2 T AR
The equations for o and & are (from Ref. 11)
& = [ cos (B + Bwash) + (0.75¢ — ve)8]/U + 6 (13)
& = [(ho 4 B) €08 (B + Oyagn) — h sin (@ + Gyagn) + (0.75¢ — y,)01/U + 6
(14)

The Fullwing code uses a linear version of the above expression for ¢ by simply
1gnoring the second term in the numerator. The nonlinear Newmark code includes
the complete expression.

It is appropriate at this point to introduce the total twist angle 6 of a segment
about its elastic axis, which 1s a combination of elastic and constant parts:

Similarly, the total plunging displacement is a combination of an imposed motion
ho and an elastic component A:

h=ho+h (16)
The imposed motion for a given wing segment is defined as
ho = Do x cos(wt) (17)

where I'g is the maximum flapping amplitude (which for the full-scale ornithopter
is about 31 deg) and x is the distance from the center of a wing segment to the
flapping axis. Returning to Eq. (8), we note that the flow velocity V must include
the downwash as well as the wing’s motion relative to the freestream velocity U.
This is done by including o’ along with the kinematic parameters:

V= \/[U cosf — h sin (é g gwash)]z + [Ula’ + ga + éwash) — (0.5¢ — Vea) 5]2
{1R3
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An additional normal-force contribution comes from the apparent-mass effect,
which acts at the midchord location (Fig. 10) and is given by

Na:ipncz(Uc‘zﬁ%cg)Ax (19)

A section’s circulation distribution generates forces in the chordwise direction as
shown in Fig. (10). From DeLaurier,'* the chordwise force due to camber is given
by

- . uv
D, = —2rag(a’ + G, + awash)pTch (20)
The leading-edge suction force is obtained from Garrick! as

- . cé 2oUV
Ti= 77527[ (Cﬂf + .05 + Owass — _) p2

iU cAx (21)

The only change to Garrick’s formulation is the addition of the 5, term, which is
referred to as the leading-edge suction efficiency factor and is determined exper-
imentally. This efficiency factor is required since Garrick’s formulation is based
on ideal potential flow.

Viscous drag on the airfoil due to skin friction is found by using the skin-friction
drag coefficient C4 for which an expression may be found in Hoerner.'® Reference
11 presents this drag as

pV?
Dy = cdf—f) cAXx (22)

where V, is the relative flow speed tangent to the section, which can be approxi-
mated by
V, = Ucost — hsin(@ + Ogan) (23)
Therefore the total chordwise force is
by =1 —-D. - Dy (24)
2. Stalled Flow

When the attached-flow range is exceeded, totally separated flow is assumed to
abruptly occur, for which the contribution of chordwise forces is negligible:

T, =D.=D; =0 (25)
and the normal force is given by
N = (Nc)scp + (Na)sep (26)

(N )sep acts at the midchord point and is due to crossflow drag and is assumed to
be

VV,
(Nodsep = ccd)(f’oTch 27)
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where

V= Vi+V (28)

Vi, 1s the midchord normal velocity component due to the wing’s motion given by
Vi = hcos(@ 4 Gyan) + 26 + Usind (29)

and V, is given by Eq. (23). It is evident from Eq. (28) that V is a nonlinear
function of the independent variables # and /. This shows that both the stalled and
attached-flow aerodynamic formulations are indeed nonlinear.

Experiments conducted at the Institute for Aerospace Studies showed the value
of the separated-flow apparent-mass normal force to be about half of that for
attached flow. (N )yp is therefore assumed to be half of the value given by Eq. (19):

N)—M—] ya—Led)a 30
(as,ep—z——gr‘on‘L o 4C X (30)

3. Aerodynamic Moments

The attached-flow aerodynamic moment about the elastic axis is a function of
the circulatory and apparent-mass normal forces and is given by

1 1
Moyero = My —No(0.25¢— y,0) — N, (0.5¢ — yoq ) — —6pJTC UAxQ—I—ZSpJTc Ax0
(31)

N and N, are given by Eqgs. (8) and (19) respectively. The fourth and fifth
terms in Eq. (31) account for the apparent camber and apparent inertia moments
respectively.!! The moment about the aerodynamic center is given by!’

v
Mo = Cae 2t ——ctAx (32)

The chordwise forces do not contribute to these moments as they essentially pass
through the elastic axis of a wing segment.
The stalled aerodynamic moment is given by

(Maero)sep = '“"[(Nc)sep + (Na)sep](o-SC — Yea) (33)

where (N, )sep and (N, )sep are given by Egs. (27) and (30) respectively. The mo-
ments about the aerodynamic center due to apparent camber and apparent inertia
effects are negligible because these quantities are defined for attached flow only.

4, Stall Criterion

Prouty'® has shown that a pitching airfoil can retain attached flow at angles
greatly exceeding the airfoil’s static stall angle. An advantage of a strip-theory
model is that it altows for an approximation to the localized stall behavior. Prouty
uses a dynamic stall-delay effect, represented by an angle A, to account for the
difference between the static and effective stall angles:

C o

U (34)

(asta]l)ef — (san)se = A = §
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- Flapping Axis

Fig. 11 Inertial loads and moments on a wing segment.

where £ is found experimentally and depends on the local Mach number. In this
case it was determined that A« is given by

o C Omag
Aa = 0.51
o ( . ) U (35)

Umag

where dnae = abs(d). The magnitude of ¢ is used to ensure that the term under
the square root is positive and the term in the brackets ensures that the correct sign
is used. Therefore, the criterion for attached flow over a wing segment is

§ . @ o 3/ cl
(Cstail Jmin = |:Q! + 85 @ wastc — Z (U):| < (Hgtall Jmax (36)

B. Inertial Forces and Moments

Figure 11 shows the inertial forces and moments acting on a wing segment. The
Fullwing code treats the masses as inertial loads but the Newmark code breaks
down the inertial loads into reactions that involve the elastic components and
external forces that are a result of the imposed motion and gravity. The inertial
reactions have already been considered by the consistent mass matrix formulation,
and the external inertial normal force is given by'”

Ninertia = (mspar + mfr)(gr - h()) (37)
Further, the external inertial moment is given by'®
Minertia = {(ys - yea)mspar + (05C - yea)mﬁ-](gr - hO) (38)

where g, 1s acceleration due to gravity.

C. Temporal Approximation for Nonlinear Terms

The most straightforward solution procedure is to use a nonlinear time-marching
algorithm such as the fourth-order Runge—Kutta method. This would avoid the
requirement of finding a temporal approximation to the nonlinear terms. An attempt
was made to use this method to solve the dynamic equilibrium equations. However,
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because of the presence of two distinct flow regimes and inherent instability, the
solution would diverge after a few time steps.
It was noted in the previous section that the circulatory and apparent-mass
normal forces are nonlinear functions of &, 8, 4, /4, and k:
Ne= f(8,6,0,h, k),  No= @06, h i
« 5 - 2 oE (39)
(Nc)sep:f(es 6, h), (Na)sep = f(6.0,6,h,h)

The value of the circulatory normal force for attached flow at time n + 1 is found
by using a Taylor series approximation:

INT N aN" . £ AN - "
N:-+—1 — N;a 5 ic [9n+l " 6"] 4 ;c [8n+l _ 0"] 5 :C [Qn+] _ 9”]
Gl 50 By
aN* . . aN” n+1 L H aNn . ..
e —E PR — B e SR — ) ST B
ah g o] Y [ ] ah L o]
INT cnyl 211
4-a£[h" — R (40)

Other normal-force components [Egs. (19), (27), and (30)] and aerodynamic
moments [Eqgs. (31) and (33)] are also expanded in a similar way.

Terms involving the nth time step are moved to the right-hand side of the equi-
librium equations [Eq. (1)] and terms involving the (n + 1)’st time step are moved
to the left-hand side of Eq. (1). Essentially, stiffness, mass, and damping matrices
are augmented by terms that account for the nonlinearity of the forcing func-
tions. Some authors (Refs. 10 and 20) refer to the augmenting matrices as tangent
stiffness and tangent mass matrices.

D. Rigid and Center Sections

Aerodynamic forces and moments acting on the rigid and center sections of the
wing are identical to those acting on the outer portion of the wing, and the same
equations and the same criterion for stall can be used. The only difference is that
the elastic variables are taken to be zero (9 =h = 0). Furthermore, the forcing
function for the rigid section is given by

AX)ys
(hO)rs = _( %)

o cos (wt) (41)

where (Ax),, is the width of the rigid section. Likewise, the center section forcing
function is given by

(ho)es = —(Ax )} o cos (wt) (42)

E. Average Lift and Thrust

The total lift and thrust of a flapping wing at any given time is the sum of the
contributions from the rigid, center, and flexible sections. The loads outlined in the
previous section are normal N and tangential F, to a given segment. Lift L and
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thrust R for a particular segment of the flexible wing are calculated as follows:
R = Fycos(f) — N sin(8), L = Ncos(@)+ F,sin(6) (43)

Lift and thrust produced by the rigid and center sections are calculated in a similar
way. The average thrust and lift generated by the whole wing over N, time intervals

are
1 N; N,
Rave o F\T 2 Rj o+ 2Rrs I Rcs) ,
Fizr \ =1 :
| " (44)
Lyye = ﬁ 2 Lj + 2L, + Lcs)
st \ j=t ;

where N, is the total number of elements per wing.

F. Bending and Twisting Moments

'The bending moments encountered at each wing segment are calculated by trans-
forming the forces in the wing’s frame of reference to the flapping-axis frame of
reference. The flapping-axis angle of attack with respect to the freestream velocity
can thus be accounted for. Hence, a new normal force Fpoma must be defined:’

Frormal = N cos (9 - ga) + (Nspar + Nfr) Ccos (éa)
+ (T + D+ D)sin(@ — 8,) (45)

where normal forces acting on the spar and fabric and rib components are!®

Nspar = mspar[}i + (ys - yea)é - gr]

; " (46)
Nfr = mfr[h + 03— yea)9 — &)

The bending moment at the flapping axis is thus calculated by adding up the
contributions of all the segments on the flexible portion:

N,
(Mbend)sr = Z(Fn()rmal)i X (47)
i=l1

where x; 1s the distance of a given segment to the flapping axis. Similarly, the
twisting mement is given by

N,
(Myistdsr = Y _(Muc)i — (Faorman)i ¥i (48)

i=1

where y; Is the distance of the elastic axis for a given segment from a line perpen-
dicular to the flapping axis and passing through the elastic axis at the flapping-axis
location.
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IV. Damping

Early in the development of the Newmark code it became apparent that a reli-
able damping model is required. Without a damping model and when using the
Expothopter data file, the solution would diverge numerically. The reason was
found to be that the undamped differential equations had positive eigenvalues.
This showed that the initial theoretical model did not represent the actual system.
However, this was in contradiction to what the Fullwing code predicted, as it did
not have a damping model either. Furthermore, the Expothopter did perform rea-
sonably well in wind tunnel tests conducted in Ottawa in 1995. At first it was
believed that the cause was a set of stiff differential equations. However, exami-
nation of the system eigenvalues showed that the equations are not stiff. Finally, it
was concluded that a damping model was required as that is the only component
not accounted for by Fullwing. Furthermore, the shearflexing action of the wing
creates damping forces along the trailing edge that must be accounted for.

The reason for Fullwing’s predictions lies in the assumptions that were made
when the code was developed, the most critical of which is that the output is
assumed to be harmonic (sinusoidal) with a frequency equal to that of the forcing
function. This basically guarantees that the output will not diverge. Therefore,
when using a time-marching method, one must account for damping to obtain a
stable solution.

Besides aerodynamic damping, there are two other forms of damping associated
with a flapping wing:

1) Fabric and rib damping. This is a result of the frictional losses from the
rubbing of the wing’s fabric covering against the ribs caused by the shear flexing
action. This action also contributes to damping as the trailing-edge strips rub
against one another.

2) Structural damping. This is due to the viscoelastic losses in the spar. In
homogeneous materials such as metals, this type of damping is relatively well
understood and damping coefficients are known. In the case of the omnithopter wing,
which is a nonhomogeneous material, experiments were conducted to determine
the free-decay constant ¢ for the overall wing.

A. Fabric and Rib Friction Damping

Experiments carried out in 1997 showed that the total damping moment is a
combination of a constant value (M) and a moment that is a function of the shear
rate (Mg, ):

Mdamp = My + M 5, (49)

In terms of the friction force:
Ff = CfOPAcon + Cprconvr (50)

The first term on the right-hand side represents the shear-rate-independent friction
force and the second term represents the shear-rate-dependent friction force. C 0
is the friction coefficient for the shear-rate-independent motion, and Cy 1s the
friction, coefficient for the shear-rate-dependent motion; p is the contact pressure,
and Ac,n, is the contact area between the surfaces. Also, v, is the spanwise velocity
of the upper surface relative to the lower surface of the wing.
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Fig. 12 Shear-rate-independent friction terms.

Considering the shear-rate-independent term and referring to Fig. 12, we can
split the total friction force into a uniformly distributed fabric and rib force f; and
a trailing-edge force fy,.:

Jo = Cropwgp dy (51)
fore = CropAse (52)

For a single wing segment the total shear-rate-independent damping moment is
found by summing the moments about the elastic axis, which in Fig. 12 is shown
to be the back of the spar. A,, is the contact area of the trailing-edge surface and
Wi 18 the width of a single rib. One thus has

C—Yea
Mio = CropAre(c — Yea) + CfOPwrib[ dy (53)
0

where c is the chord length of a particular wing section and y,, is the distance
from the leading edge to the elastic axis. My is therefore given by

My = Cf()p (C - yea) [Are + %13 (C - yea) jlsgn(é) (54)

For the shear-rate-dependent damping moment, it is assumed that the friction force
is related to velocity as shown by the second term on the right-hand side of Eq. (50).
For each segment of the wing there is a twist/shear rate expressed as 86 /3x, which
is shown in Fig. 13. At this point we assume that the relative velocity of the upper
surface to the lower surface v, has alinear distribution, going from zero at the elastic
axis to v, = vy, at the trailing edge. This gives rise to a friction force distribution
as shown in Fig. 14. The two force components f(y) and f,, are given by

F) = Crpu(y)wnp dy (55)
fI(’ = CfpvreAze (56)
The shear-rate-dependent damping moment is thus given by
C—Yea
Mygw = Fie (¢ — yeu) + f f(y)ydA
0
Wrib e Yea

=C Ao (€ = Yea) + ————
pr!e|: re (C Vea) (C — Yeu) :

¥ dy} (57)
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Fig. 13 Shear rate illustration.

Performing the integral on the right-hand side and simplifying gives

Wb
My, = Cfpvte (€ — Yea) [Ate + "3— (c — yea)]

The velocity at the trailing edge can be written as
0x  ox 90 8x9
dt 30 ar 90

Ve =

so that My, 1s finally given by
dx

Wb z
Msr:C — Yea Ae e — Yea — 16
d plc—y )[ % T 3 (c—y )} (89)

B. Structural Damping

417

(58)

(59)

(60)

Structural damping is primarily due to mechanisms such as hysteresis in the
material and slip in connections. These mechanisms are not well understood and
they are awkward to incorporate into the equilibrium equations. Therefore, the
actual mechanism is usually approximated by viscous damping. Comparisons of
theory and experiment show that this approach is sufficiently accurate in most
cases.?® With such approximate methods, experimental observations of the vibra-
tory response of structures are used to assign a fraction of critical damping as a

Trailing Edge

Fig, 14 Shear-rate-dependent friction forces.
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function of frequency or, more commonly, a-single decay constant ¢ for the
frequency range.

A popular damping scheme, called Rayleigh or proportional damping, is to form
a damping matrix {D] as a linear combination of the stiffness and mass matrices,
that is,

[D] = a[M] + b[K] (61)

where a and b are called the mass- and stiffness-proportional damping constants
respectively. The damping matrix [Eq. (61)] is orthogonal because it permits
modes to be uncoupled by eigenvectors associated with the undamped eigenvalues.
The relationship among a, b, and decay constants ¢ at a frequency o is given by?0
e+ w*b

¢ = (62)

2w
Damping constants a and b are determined by choosing two distinct decay con-
stants (¢; and ¢, ) at two different frequencies (w; and w,) and solving simultaneous
equations for a and b. Thus,

— Ow Wy — {1
£ = oo §1w§ §22 1 ’ b 2@.’2 i §12 1 (63)
Wy — wy w; — W

As part of the work leading to the design of the full-scale ornithopter, several
sample spars were constructed. One of these, known as Spar 6, was used to perform
fatigue testing (Fig. 15). Spar 6’s bending and torsional stiffness characteristics
are identical to the actual wing spar’s characteristics at the flapping-axis location.

In 1998, Spar 6 was used to determine its bending and torsional decay constants.
Figure 16 shows Spar 6 in its bending configuration and Fig. 17 shows Spar 6 in
its torsional configuration.

The testing procedure involved adding weights to the spar and striking it with
a hammer while its vibratory response was measured using an accelerometer. The

99.00"
72.00"
25.825"
Top View
9
&
~ 0 oy u §
& o5 5
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(‘fﬂ iy
Front View

Fig. 15 Spar 6 schematic.
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Fig. 16 Bending configuration.

weights were varied to produce a range of natural frequencies. Figure 18 shows
the experimental results as well as a theoretical decay constant obtained using
Rayleigh constants ¢ = 0.0136 and » = 0.0008. It is evident from the graph
that decay constants for bending and torsion are fairly constant over the range of
frequencies tested. Basically, the Rayleigh model assumes a damping ratio that
is within the limits prescribed by the two main damping modes. The Rayleigh
model is also reasonable considering that the decay constants are on the order of
6 x 1072, or 0.6% of critical damping.

V. Results and Discussion

A large quantity of experimental data have been obtained during the design and
testing of the two models as well as the full-scale ornithopter. The results of tests on
the Expothopter are presented in a thesis by Fowler’ and the bulk of experimental
data for the full-scale ornithopter is contained in two M.S. theses by Mehler?
and Fenton.* The objective of this section is to present a comparison between
the nonlinear Newmark code and experimental results in all flight regimes, and
to compare the Newmark and Fullwing codes at near-flight conditions.

Spar 6 Top View
Accelerometer- — »u
A
 _ ¥ —
Weights<- B

Fig. 17 Torsional configuration.
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Fig. 18 Spar 6 decay constant variation.

A. Quarter-Scale Model Wing Tests

One of the wings of the quarter-scale model was attached to a flapping mech-
anism in the subsonic wind tunnel at the University of Toronto’s Institute for
Aerospace Studies.!? The wing was also attached to scales that measured the gen-
erated average lift and thrust values at different flapping frequencies. Figures 19
and 20 show a comparison between theoretical results from Newmark and Full-
wing codes as well as experimental data obtained during the tests. The discrepancy
between theoretical and experimental lift is mainly due to the difference between

5 oEROSMEERISEY  NGREVSDEEEE  ETUTIDOIINE  WORTRIIRER e SR e
Y b W TN P
§ * P . ] e ® o ® L]
S
_"E 3 i R S
—
& ¢  Experimental Data
o 2k Fullwing
L -—— Newmark
<.
1 b= e sewm swen sReet h mess e Decken seee USRS B a0 Seeiseis
0 L 1 { L J
0 1 2 3 4

Flapping Frequency (Hz)

Fig. 19 Quarter-scale lift performance. U =45 ft/s; 6, = 6 deg.
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Fig. 20 Quarter-scale thrust performance. U =45 ft/s; 8, = 6 deg.

the actual bending and torsional stiffness properties of the wing and the theoretical
values used in the analysis.

B. 1996 Full-Scale Static-Flapping Tests

In 1996, a series of static-flapping tests were conducted. Strain gauges were
attached to the wing at four locations as shown in Fig. 21 and twisting and bending
moments were measured at different flapping frequencies. Figures 22 and 23 show
a summary of maximum and minimum twisting and bending moment values for
flapping frequencies from 0.4 to 1.1 Hz. Newmark’s prediction is also shown. It
should be recalled that the aerodynamic model is based on a strip theory. Such an
approximation is limited, particularly in a fully-stalled flow regime.

Video footage of the wingtip motion was used to assess the twisting behavior
of the wing and compare it to Newmark’s predictions. Figures 24 and 25 show the
wingtip twist at 0.91 and 0.97 Hz, respectively. It is evident from these figures that
the nonlinear acrodynamic formulation is capable of predicting the wing’s twisting
behavior at conditions of zero forward speed.

Driving  Flapping

A)!(is Axly Strain Gauges
=2 i

L Super Rib
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Right Wing Twisting Moment at #1 (ft-1b)

Fig. 22
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Static twisting moment vs flapping frequency. U = 0.01 ft/s; 8, = 0 deg.

1997 and 1998 Taxi Tests

In the summer of 1997 and 1998, extensive taxi trials were conducted at
Downsview airport in Toronto. Figure 26 shows the ornithopter during a liftoff
test in 1999. Unfortunately, all throughout 1997 and 1998 some strain gauges
failed progressively and only a limited amount of data was collected. This is suffi-
cient, however, to provide an opportunity for comparing the Newmark predictions
with experimental data. Figures 27 and 28 show a summary of the maximum and

Right Wing Bending Moment at #1 (ft-1b)

Fig. 23
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Static bending moment vs flapping frequency. U = 0.01 ft/s; 8, = 0 deg.
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Fig. 24 Wing tip twist angle variation (w = 0.91 Hz).

minimum twisting and bending moments during the 1997 and 1998 seasons. It
should be noted that the reason for the limited amount of twisting-moment data is
that all twisting-moment strain gauges had failed by the end of the 1997 season.
Furthermore, the results presented here represent only portions of taxi tests where
steady-state conditions were present. A steady-state condition in a taxi test would
occur only when the throttle was maintained at a constant level and air speed was
not rapidly changing. The reason for not connecting the data points on Figs. 27
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Fig. 25 Wing tip twist angle variation (w = 0.97 Hz).
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Fig. 26 Liftoff test in 1999,

and 28 is that each data point represents a run with different air speed U and angle
of attack 6, values.

The strain gauges provided a significant quantity of instantaneous twisting- and
bending-moment data as well. Figures 29 and 30 show the instantaneous twisting
and bending moments during one of the runs in 1997. There is a maximum error

of 20% associated with the twisting-moment data and about 15% for the bending-
moment data.
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Fig. 27 Taxi test twisting moment vs flapping frequency.
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Fig. 28 Taxi test bending moment vs flapping frequency.
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Fig. 30 Instantaneous bending moment for run 1 on 15 September 1997, U = 44 ft/s;
8, = 3 deg; w =0.96 Hz.

The Newmark code is very valuable for predicting lifting and thrusting perfor-
mance of the wings, as shown in Figs. 31 and 32 for a flapping frequency of 1.2 Hz
and an angle of attack 8, of zero. Although there is good agreement between Full-
wing and Newmark average lift results, the static thrusting values are considerably
different. As part of the 1996 static tests the value of average thrust at 1 Hz was
measured to be about 25 1b. This, and the fact that in the 1997 and 1998 taxi trials

the ornithopte

r was able to start its ground roll under its own power, shows that

the Newmark thrust predictions are more accurate.
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Fig. 31 Average lift vs air speed.
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Fig. 32 Average thrust vs air speed.

VI. Conclusions

This chapter has presented an updated numerical method for predicting the per-
formance of a flapping wing in steady flight. This is a design-oriented analysis
using a nonlinear strip theory model for attached flow and poststall behavior. The
finite element structural model that is used is both practical and versatile enough to
handle different geometrical configurations with little or no modifications. A trans-
lational matrix formulation eliminates the need for cross members that would have
otherwise been required to connect the spar and fabric and rib elements to one an-
other. The Rayleigh damping model is a convenient way for modeling the damping
characteristics of the spar, and experimental data were used to determine approx-
imate values for bending and torsional decay constants associated with a sample
spar. The Rayleigh model is also suitable because the spar’s decay constant is about
0.6% of critical damping. The fabric and rib friction-damping model account for
the energy loss caused by the shearflexing action of the wing. This damping model
is necessary since shearflexing is a unique feature of the ornithopter’s wing.

The Newmark predictions for maximum and minimum twisting moment during
static flapping are quite accurate and much better than expected considering the
relatively simple aerodynamic model used. There is a maximum error of about 25%
associated with the maximum and minimum bending moments at the flapping-axis
location for static flapping.

One of the issues raised during the 1996 static-flapping tests was the unexpected
twisting behavior of the wings. This was particularly worrisome at the time because
the phase angle between flapping and twisting was not close to the optimum value
of approximately —90 deg. By properly modeling the fully stalled characteristics
of the wing it became possible to predict the correct wing twisting behavior at near-
static conditions. This basically shows that severe stalling at near-static conditions
produces a twisting behavior that is far from optimum. This is possibly the most
important contribution from the analysis.

There is better agreement between theory and experimental data for near-flight
conditions. The maximum error for maximum and minimum bending and torsion
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still functioning were more than two-years old and were beginning to suffer from
adhesive deterioration.

This analysis has not only helped the research team at the Institute for Aerospace
Studies better understand the aerodynamic characteristics of the ornithopter’s

wings, but it will also provide a valuable tool for future design of flapping wing
aircraft,
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